城市:
成考系统:

关注公众号

服务时间08:00-24:00

微信公众号

考生交流群

免费课程/题库

微信扫一扫

关闭
所在位置:贵州成考网 > 贵州成人高考试题题库 > 高起本 > 2020年贵州成人高考高升本数学题(二)参考答案

2020年贵州成人高考高升本数学题(二)参考答案

签到领取培训券,免费领取各类提升课程
2020-08-10 09:38:08 来源: 其它
作者:黄老师
  下面是2020年贵州成人高考高升本数学题(二)参考答案,你做对了吗?多学多练才能拿高分哦,下面我们一起来对一下答案吧!

  2020年贵州成人高考高升本数学题(二)参考答案

  难点磁场

  证明:(1)充分性:由韦达定理,得|b|=|α·β|=|α|·|β|<2×2=4.

  设f(x)=x2+ax+b,则f(x)的图象是开口向上的抛物线.

  又|α|<2,|β|<2,∴f(±2)>0.

  即有 4+b>2a>-(4+b)

  又|b|<4 4+b>0 2|a|<4+b

  (2)必要性:

  由2|a|<4+b f(±2)>0且f(x)的图象是开口向上的抛物线.

  ∴方程f(x)=0的两根α,β同在(-2,2)内或无实根.

  ∵α,β是方程f(x)=0的实根,

  ∴α,β同在(-2,2)内,即|α|<2且|β|<2.

  歼灭难点训练

  一、1.解析:若a2+b2=0,即a=b=0,此时f(-x)=(-x)|x+0|+0=-x·|x|=-(x|x+0|+b)

  =-(x|x+a|+b)=-f(x).

  ∴a2+b2=0是f(x)为奇函数的充分条件,又若f(x)=x|x+a|+b是奇函数,即f(-x)=

  (-x)|(-x)+a|+b=-f(x),则必有a=b=0,即a2+b2=0.

  ∴a2+b2=0是f(x)为奇函数的必要条件.

  答案:D

  2.解析:若a=1,则y=cos2x-sin2x=cos2x,此时y的最小正周期为π.故a=1是充分条件,反过来,由y=cos2ax-sin2ax=cos2ax.故函数y的最小正周期为π,则a=±1,故a=1不是必要条件.

  答案:A

  二、3.解析:当a=3时,直线l1:3x+2y+9=0;直线l2:3x+2y+4=0.∵l1与l2的A1∶A2=B1∶B2=1∶1,而C1∶C2=9∶4≠1,即C1≠C2,∴a=3 l1∥l2.

  答案:充要条件

  4.解析:若P(x0,y0)是F(x,y)=0和G(x,y)=0的交点,则F(x0,y0)+λG(x0,y0)=0,即F(x,y)+λG(x,y)=0,过P(x0,y0);反之不成立.

  答案:充分不必要

  三、5.解:根据韦达定理得a=α+β,b=αβ.判定的条件是p: 结论是q: (注意p中a、b满足的前提是Δ=a2-4b≥0)

  (1)由 ,得a=α+β>2,b=αβ>1,∴q p

  (2)为证明p q,可以举出反例:取α=4,β= ,它满足a=α+β=4+ >2,b=αβ=4× =2>1,但q不成立.

  综上讨论可知a>2,b>1是α>1,β>1的必要但不充分条件.

  6.证明:①必要性:

  设{an}成等差数列,公差为d,∵{an}成等差数列.

  从而bn+1-bn=a1+n· d-a1-(n-1) d= d为常数.

  故{bn}是等差数列,公差为 d.

  ②充分性:

  设{bn}是等差数列,公差为d′,则bn=(n-1)d′

  ∵bn(1+2+…+n)=a1+2a2+…+nan ①

  bn-1(1+2+…+n-1)=a1+2a2+…+(n-1)an ②

  ①-②得:nan= bn-1

  ∴an= ,从而得an+1-an= d′为常数,故{an}是等差数列.

  综上所述,数列{an}成等差数列的充要条件是数列{bn}也是等差数列.

  7.解:①必要性:

  由已知得,线段AB的方程为y=-x+3(0≤x≤3)

  由于抛物线C和线段AB有两个不同的交点,

  所以方程组 *有两个不同的实数解.

  消元得:x2-(m+1)x+4=0(0≤x≤3)

  设f(x)=x2-(m+1)x+4,则有

  ②充分性:

  当3

  x1= >0

  ∴方程x2-(m+1)x+4=0有两个不等的实根x1,x2,且0

  因此,抛物线y=-x2+mx-1和线段AB有两个不同交点的充要条件3

  8.解:若关于x的方程x2+mx+n=0有2个小于1的正根,设为x1,x2.

  则0

  根据韦达定理: 有-2

  反之,取m=- <0

  方程x2+mx+n=0无实根,所以p q

  综上所述,p是q的必要不充分条件.

  以上是给大家带来的关于2020年贵州成人高考高升本数学题(二),希望对大家有所帮助!考生想了解更多关于贵州成考高升本备考资料、高升本试题、报考指南、学习方法等资讯,欢迎关注贵州成考高升本www.jbqedu.com!

  点击-查看试题内容

成人高考院校专业指导专属提升方案

获取方案 OR 点我咨询 点我关注 点我加群

未经授权不得转载,如需转载请注明出处。

转载请注明:文章转载自 其它
本文关键词: 贵州成人高考高升本数学题  
本文地址:http://www.jbqedu.com/show-35-8083-1.html

贵州成考网申明:

(一)由于各方面情况的调整与变化本网提供的考试信息仅供参考,敬请以教育考试院及院校官方公布的正式信息为准。

(二)本网注明信息来源为其他媒体的稿件均为转载体,免费转载出于非商业性学习目的,版权归原作者所有。如有内容与版权问题等请与本站联系。联系方式:邮件429504262@qq.com

上一篇:2020年贵州成人高考高升本数学题(二)

下一篇:2020年贵州成人高考高起本《历史》考前练习题及答案汇总

课程相关图片

2023年成考精讲班

讲师:林老师、梁老师、吴老师、汪老师

特色:百余位讲师共同执教,千名教辅老师督学

立即报名 班级详情>>
新用户注册即送500培训券。 注:1积分=1培训券 立即注册
培训券
课程名称 课程 讲师 查看课程
贵州成人高考专升本《政治》直播精讲试听课程 张老师 36课时 查看详情
贵州成人高考专升本《生态基础学》直播精讲试听课程 聂老师 36课时 查看详情
贵州成人高考专升本《教育理论》直播精讲试听课程 缪老师 36课时 查看详情
贵州成人高考专升本《英语》直播精讲试听课程 陈老师 36课时 查看详情
贵州成人高考专升本《高数二》直播精讲试听课程 36课时 查看详情
贵州成人高考专升本《高数一》直播精讲试听课程 陈老师 36课时 查看详情
贵州成人高考专升本《大学语文》直播精讲试听课程 雷老师 36课时 查看详情
课程相关图片

2023年成考VIP班

讲师:林老师、梁老师、吴老师、汪老师

特色:名师辅导3阶段系统教学,4项纸质版配套资料赠送,实力考证

立即报名 班级详情>>
新用户注册即送500培训券。 注:1积分=1培训券 立即注册
培训券
课程名称 课程 讲师 查看课程
专升本VIP直播班 蒋老师 36课时 查看详情
高升本精讲课程 蒋老师 36课时 查看详情
专升本(艺术)VIP班 蒋老师 36课时 查看详情
高起专精讲课程 蒋老师 36课时 查看详情
专升本(文史)VIP班 蒋老师 36课时 查看详情
高起本VIP直播班 蒋老师 36课时 查看详情
专升本(法学)VIP班 蒋老师 36课时 查看详情

优质老师授课

专业教学体系

高性价比课程

7天保障畅学无忧

贵州成考网选课中心

【成考课程学习中心】

在线模拟答题 我的课程
  • 考生交流群

  • 微信公众号

扫一扫加入微信交流群

与考生自由互动、并且能直接与专业老师进行交流、解答。

免费领取说明

1、培训券可兑换一门视频课程。

2、下载注册APP即可获得400培训券,签到、发帖讨论也可获取培训券。

3、鼓励学习,在线学习也可积累培训券。

4、兑换的课程与购买的为相同课程。

5、课程可在APP或者小程序进行学习。

贵州成人高考提升便捷服务

【2024年贵州成人高考】

贵州成考录取查询预计:

12/20/2024

贵州成考录取查询入口 贵州成考预报名入口

【祝所有考生考试顺利!】

  • 考生交流群

  • 微信公众号

扫一扫加入微信交流群

与考生自由互动、并且能直接与专业老师进行交流、解答。

贵州考生在线服务

专升本咨询

高起专/本咨询

学校专业咨询

考前辅导咨询

复习礼包领取

报名入口

扫码立即关注公众号

扫码立即加入交流群

公众号

交流群

回到顶部

关闭